LESSON 9-6

Solving Quadratic Equations by Using Square Roots

Solve using square roots. Check your answer.

1. \(x^2 = 81 \)
 \[x = \pm \sqrt{81} \]
 \[x = \pm 9 \]
 The solutions are \(9 \) and \(-9 \).

2. \(x^2 = 100 \)
 \[x = \pm \sqrt{100} \]
 \[x = \pm 10 \]
 The solutions are \(10 \) and \(-10 \).

3. \(x^2 = 225 \)
 \[x = \pm \sqrt{225} \]
 \[x = \pm 15 \]

4. \(441 = x^2 \)
 \[\pm \sqrt{441} = x \]
 \[x = \pm 21 \]

5. \(x^2 = -400 \)
 \[x = \pm \sqrt{-400} \]
 \[x = \pm 20i \]
 The solutions are \(20i \) and \(-20i \).

6. \(3x^2 = 108 \)
 \[x = \pm \sqrt{108} \]
 \[x = \pm 6 \]

7. \(100 = 4x^2 \)
 \[\pm \sqrt{100} = x \]
 \[x = \pm 10 \]

8. \(x^2 + 7 = 71 \)
 \[x^2 = 64 \]
 \[x = \pm 8 \]

9. \(49x^2 = 64 \)
 \[\pm \sqrt{49}\times 64 = x \]
 \[\pm 8\sqrt{7} = x \]

10. \(-2x^2 = -162 \)
 \[\pm \sqrt{-2}\times -162 = x \]
 \[\pm 18i = x \]

11. \(9x^2 + 100 = 0 \)
 \[\pm \sqrt{-9}\times 100 = x \]
 \[\pm 10\sqrt{3}i = x \]

12. \(0 = 81x^2 - 121 \)
 \[\pm \sqrt{81}\times -121 = x \]
 \[\pm 11 = x \]

13. \(100x^2 = 25 \)
 \[\pm \sqrt{100}\times 25 = x \]
 \[\pm 5 = x \]

14. \(100x^2 = 121 \)
 \[\pm \sqrt{100}\times 121 = x \]
 \[\pm 11 = x \]

Solve. Round to the nearest hundredth.

15. \(8x^2 = 56 \)
 \[\pm \sqrt{8}\times 56 = x \]
 \[\pm 4 = x \]

16. \(5 - x^2 = 20 \)
 \[-x^2 = 15 \]
 \[x^2 = -15 \]
 \[x = \pm \sqrt{-15} \]

17. \(x^2 + 35 = 105 \)
 \[x^2 = 70 \]
 \[x = \pm \sqrt{70} \]

18. The height of a skydiver jumping out of an airplane is given by \(h = -16t^2 + 3200 \). How long will it take the skydiver to reach the ground? Round to the nearest tenth of a second.

19. The height of a triangle is twice the length of its base. The area of the triangle is 50 m\(^2\). Find the height and base to the nearest tenth of a meter.

20. The height of an acorn falling out of a tree is given by \(h = -16t^2 + b \). If an acorn takes 1 second to fall to the ground. What is the value of \(b \)?
California Standards 2.0, 2.0

Practice

Solving Quadratic Equations by Using Square Roots

Solve using square roots. Check your answer.

1. \(x^2 = 81\)

 \(x = \pm \sqrt{81}\)

 \(x = \pm 9\)

 The solutions are \(9\) and \(-9\).

2. \(x^2 = 100\)

 \(x = \pm 10\)

 The solutions are \(10\) and \(-10\).

3. \(x^2 = 225\)

 \(x = \pm \sqrt{225}\)

 \(x = \pm 15\)

 \(\pm 21 - x\)

 \(\pm 5\)

 \(\pm 9\)

 \(\pm 11\)

 \(\pm 10\)

4. \(x^2 = 100\)

 \(x = \pm \sqrt{100}\)

 \(x = \pm 10\)

 \(\pm 12 - x\)

 \(\pm 10\)

Round to the nearest hundredth.

5. \(x^2 = 35\)

 \(x = \pm \sqrt{35}\)

 \(x = \pm 5.92\)

 \(\pm 5\)

 \(\pm 9\)

 \(\pm 11\)

 \(\pm 10\)

Solve using the quadratic formula.

1. \(x^2 - 8x + 13 = 0\)

 \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)

 \(x = \frac{-8 \pm \sqrt{64 - 52}}{2}\)

 \(x = \frac{-8 \pm 6}{2}\)

 \(x = 1, 5\)

2. \(x^2 + 6x + 34 = 0\)

 \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)

 \(x = \frac{-6 \pm \sqrt{36 - 136}}{2}\)

 \(x = \frac{-6 \pm 2i\sqrt{100}}{2}\)

 \(x = -3 \pm i\sqrt{10}\)

3. \(x^2 - 2x - 15 = 0\)

 \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)

 \(x = \frac{2 \pm \sqrt{4 + 60}}{2}\)

 \(x = \frac{2 \pm 8}{2}\)

 \(x = 5, -3\)

Solve each equation by completing the square.

1. \(x^2 - 8x + 13 = 0\)

 \(x^2 - 8x + 16 = -3\)

 \((x - 4)^2 = -3\)

 \(x = 4 \pm i\sqrt{3}\)

2. \(x^2 + 6x + 34 = 0\)

 \(x^2 + 6x + 9 = -25\)

 \((x + 3)^2 = -25\)

 \(x = -3 \pm 5i\)

3. \(x^2 - 2x - 15 = 0\)

 \(x^2 - 2x + 1 = -16\)

 \((x - 1)^2 = -16\)

 \(x = 1 \pm 4i\)

California Standards 2.0, 2.0

Practice

Completing the Square

Complete the square to form a perfect square trinomial.

1. \(x^2 + 4x + 4 = (x + 2)^2\)
2. \(x^2 - 2x + 1 = (x - 1)^2\)
3. \(x^2 + 5x + \frac{25}{4} = (x + \frac{5}{2})^2\)

Solve each equation by completing the square.

1. \(x^2 - 8x + 13 = 0\)

 \(x^2 - 8x + 16 = -3\)

 \((x - 4)^2 = -3\)

 \(x = 4 \pm i\sqrt{3}\)

2. \(x^2 + 6x + 34 = 0\)

 \(x^2 + 6x + 9 = -25\)

 \((x + 3)^2 = -25\)

 \(x = -3 \pm 5i\)

3. \(x^2 - 2x - 15 = 0\)

 \(x^2 - 2x + 1 = -16\)

 \((x - 1)^2 = -16\)

 \(x = 1 \pm 4i\)

California Standards 2.0, 2.0

Practice

The Discriminant

Find the number of real solutions of each equation by using the discriminant.

1. \(x^2 = 25\)

 \(b^2 - 4ac = 0\)

 None

2. \(x^2 - 11x + 28 = 0\)

 \(b^2 - 4ac = 1\)

 One

3. \(x^2 = 8x + 16 = 0\)

 \(b^2 - 4ac = 4\)

 Two

4. \(x^2 + 6x - 4 = 0\)

 \(b^2 - 4ac = 10\)

 None

5. \(x^2 - 24x = 144\)

 \(b^2 - 4ac = 0\)

 One

6. \(3x^2 + 6x - 5 = 0\)

 \(b^2 - 4ac = 36\)

 None

Find the number of x-intercepts of each function by using the discriminant.

1. \(y = 2x^2 + 3x + 1\)

 \(b^2 - 4ac = 1\)

 One

2. \(y = 4x^2 + 4x + 1\)

 \(b^2 - 4ac = 0\)

 One